Etikettarkiv: vindkraft

Helgläsning v8

Jag släpper denna helgläsning lite i förväg. Kanske passar det bra för någon som passat på att ta lite ledigt på sportlovet?

  1. Kanske den viktigaste forskningsrapporten på kärnkraftsområdet som jag sett hittills, gör upp med påståendet om att kärnkraftens kostnader ökar över tid. Det visar sig att det inte alls finns någon sådan generell trend. Grafen nedan visar hur påståendet framförallt drivits av USAs kostnader för de reaktorer som var under byggnation vid TMI/Harrisburg-olyckan. Det klarast lysande landet vad gäller kostnadskontroll är Sydkorea.nuclear-costs
  2. En M-politiker från Linköping förklarar varför Mp-S-L-kommunens satsning på 250 miljoner för vindkraft är slöseri. Politiker borde sätta sig ner oftare och förklara policy för folk på det här viset. Och någon driftig person borde syndikera det, dvs samla den här typen av videos, indexera och kategorisera. https://www.youtube.com/watch?v=DJ-vAXUkKDY&sns=fb
  3. En läsvärd kritik av Mark Z. Jacobsons senaste projekt, där han i ett snyggt webbgränssnitt fantiserat om hur vart och ett av världens länder kan gå över till förnybart:
    [The project has] ”a board of directors filled by solar company executives, lawyers and filmmakers. […] Well, that’s the board, and boards don’t need have to have technical expertise in the company’s technology. Let’s look at the staff leadership section, instead. In a renewable-energy not-for-profit, I would expect to see an executive director, an engineering group leader, and a communication group leader. There might be more groups, too, such as HR and fundraising. However, this project has four leaders: an executive director (of course), a creative director (huh?), an executive producer (huh?) […] I can’t call the Jacobson document a plan. It’s not a plan. (Maybe it’s a film.)”
  4. Barnadödlighetens utveckling i Sverige, Sydkorea och Iran: child_mortality
  5. Den rätta sortens klasskamp via en Carpe-diem-bloggpostning som bör läsas i sin helhet. (En annan intressant punkt var två-föräldra-privilegiet): the_right_enemy
  6. En undersökning av svenska lotterivinnare tyder på att stora lottovinster inte hjälper när det gäller vinnarnas förväntade livslängd eller deras barns utveckling.
  7. Christoffer Fjellner (M), sitter i miljöutskottet i Europaparlamentet. Här berättar han om gröna organisationers fullständiga indifferens inför sanningen. Har vi sett det förut?
  8. Ytterligare något från Carpe Diem – en graf över restauranger vs livsmedelsförsäljning som indikerar att amerikaner nu spenderar mer på restaurang än på hemlagad mat. Jag försökte kolla upp läget i Sverige, och 2014 verkade vi spendera 249 mdr på livsmedel och 111 mdr på restaurang.
  9. Innovationen fortsätter i shaleolje-revolutionens USA.
  10. Färsk forskning indikerar att värnplikten i Sverige ökat klassklyftorna och dessutom ökat kriminaliteten hos män efter avslutad värnplikt.

Att sila mygg och svälja kameler

Lars Wilderäng (känd som bloggaren Cornucopia?) har fått jobbet som ny SlösO. Ett utmärkt val – mina gratulationer och lyckönskningar! SlösO gör ett viktigt jobb, och det ska bli intressant att se om Lars bryter med tidigare SlösOs tendens att sila mygg och svälja kameler. Tendensen är iochförsig begriplig, eftersom myggen, exempelvis i form av småkommuners skrytprojekt  i miljonklassen är sånt som de flesta kan förstå och enas om, medan kamelerna i miljardklassen ofta är stora politiska frågor som är svårare att se igenom och lättare att vara oense om. De stora linjerna när det gäller arbetsmarknad, bostadspolitik, invandringspolitik, energipolitik, infrastruktur mm innefattar många väldigt politiskt laddade kameler.

Jag tänkte ta upp ett par av de senare i det här inlägget. Det handlar om att reaktorn Oskarshamn 2 stängdes i slutet av förra året medan Oskarshamn 1 ska stängas i mitten av nästa år. De gröna arbetar ihärdigt med verklighetsbeskrivningen för dessa beslut – framförallt att reaktorerna är ”olönsamma” och att effektskatten inte spelar någon roll. Många har dessutom framfört att elcertifikaten, som subventionerar förnybart, kostar oss mindre än vad den subventionerade kraften har sänkt elpriset. Vi skulle alltså tjänat på att tvingas subventionera, enligt det resonemanget. För mig är allt detta väldigt närsynt och missar skogen för alla träd. Låt mig förklara:

Samhällsekonomiskt perspektiv

Resonemang som ovan tittar på enskilda kostnader och pekar bara på den som primärt drabbas eller gynnas, medan det stora samhällsekonomiska perspektivet saknas. Det gör att förståelsen blir klen. Det är en brist vi ofta ser i resonemang som tar sin utgångspunkten i att någon annan, helst någon rik eller ett företag, ska betala. Problemet är bara att kostnaderna sällan eller aldrig stannar hos de rika/företagen utan i stort sett alltid vältras över på resten av samhället genom olika skatter, investeringar, (brist på) utdelningar, prishöjningar, subventioner etc.

Det samhällsekonomiska perspektivet kan lämpligen, utan att tappa precision eller relevans, skippa närmare analys av storleken på skatter, subventioner och priser. Det räcker med att konstatera följande:

  1. Oskarshamn 2 skulle utan vidare kunna drivas vidare i 20 år till. Reaktorn har just genomgått det stora projektet Plex, Plant Life Extension, som syftade till just denna förlängda livslängd. När projektet var i stort sett slutfört lades reaktorn ner.
  2. Vindkraften har ungefär samma livslängd, 20 år, som reaktorn.
  3. Kärnkraft och vindkraft har ungefär samma kostnader för drift och underhåll.

Plex_byggnation_2Slutsatsen av detta kan bara bli att den senast byggda vindkraft som matchar reaktorn är en samhällsekonomiskt onödig investering. Istället för att nyinvestera och lägga ner hade vi kunnat behålla det vi hade. Energimängden i systemet hade blivit samma, men utan investeringskostnaden.

Kamelens storlek

Effekten hos Oskarshamn 2 efter Plex var cirka 850 MW. Om vi antar en kapacitetsfaktor på 80% och jämför med vind på 30%, så motsvarar Oskarshamn 2 cirka 2300 MW vindkraft. I Sverige byggdes 614 MW vindkraft år 2015, 1050 MW år 2014 och 2013 ca 613 MW. Totalt har alltså nedläggningen av Oskarshamn 2 ganska precis matchat vindkraftsutbyggnaden under de tre åren 2013-2015. Effektiv livslängd för detta tillskott blev alltså i genomsnitt knappt 1.5 år.

Vindkraft kostar i storleksordningen 12 kr/W, varför 2300 MW vindkraft kostar cirka 28 miljarder. Tillkommer kostnader för balanskraft, extra elnät och sämre värde för exporten, så låt oss avrunda till 30 miljarder jämnt. Dessa 30 miljarder är alltså en investering som ekonomiskt saknar nytta, och en kostnad som obönhörligen och i princip fullt ut kommer drabba oss medborgare genom olika kanaler.

Framtida kameler

OKG har aviserat nedläggning av Oskarshamn 1 i mitten av 2017. Detta kommer troligen radera ut vindkraftstillskottet som subventioneras fram under 2016 och 2017. Den effektiva livslängden för det tillskottet blir alltså ännu mindre, under ett år. Även Oskarshamn 1 skulle nämligen kunna drivas vidare i 20 år till.

Näst på tur står Ringhals 1-2 under 2019-2020. Var och en av dessa kameler kommer kosta runt 30 miljarder, särskilt som integrationskostnaderna kommer öka vad gäller elnät, lagring, balanskraft mm. Vi kan också räkna med att investeringskostnaderna per kWh ökar iochmed en omviktning av investeringarna mot mer solceller och havsbaserad vindkraft. Det här är våra fyra minsta reaktorer och vi kan alltså räkna med 120 mdr i matchande onödiga investeringar.

Sammanfattning

Alliansen och S-Mp-regeringen har båda fört en politik som drivit fram dessa slit-och-släng-investeringar på energiområdet. Ett parti som varit pådrivande i överenskommelser i båda fallen är Centern, som trots sin litenhet troligen är det mest långsiktigt inflytelserika och destruktiva partiet när det gäller svensk energiförsörjning.

Det pågår som sagt en intensiv politisk debatt om kärnkraftens nedläggning, och den röda tråden i de grönröda inläggen i frågan är mantrat att kärnkraften är ”olönsam”. Det stämmer förstås – den har gjorts olönsam. Men det samhällsekonomiska perspektivet kan inte vara annat än att det är den tillkommande vindkraften som är en opåkallad investering.

Miljardinvesteringarna kommer fortgå. Oavsett önsketänkande och närsynta resonemang så kommer du inte undan att betala din del av den samhällsekonomiska kostnaden. Tur att vi svenskar är rika och har råd, samt att snurrorna står ståtliga i naturen och skänker ära åt Lööf och Romson. Tänk drygt 3000:- i välståndsförlust för varje person i din familj, per kamel. Inte så farligt, eller hur? Ungefär en kamel per år fram till 2020. Sen blir det iochförsig värre när vi börjar beta av de större reaktorerna, men det är inget vi behöver tänka på nu – långsiktig energipolitik är SÅ 1970-tal. I modern politik är perspektivet 1-2 år.

Vindkraften, uppdatering 2016

Jag har följt vindtillväxten år för år och har påpekat att vindkraften sedan 2009 växlat över i en linjär tillväxtbana, dvs ungefär lika mycket ny vind adderas varje år. Frågan är viktig, för att om vinden ligger på linjär tillväxt, och givet en livslängd på 20-25 år, så kommer vindkraften plana ut på en viss förutsägbar andel av världens elproduktion.

Idag publicerade GWEC siffrorna för vind-installationerna 2015 och det är därmed dags att besöka ämnet igen. Och faktum är att liket lever! Vindkraftsinstallationerna år 2015 överträffade nämligen förväntningarna kraftigt. GWECs prognos var på 53.5 GW och utfallet blev hela 63 GW. Mycket av överraskningen berodde på Kina, som ensamt rapporterat in cirka 30 GW, medan resten av ökningen beror på Nordamerika där USA under året garanterade subventionerna för ett antal år framåt och därmed fick ett strålande fjärde kvartal.

Installationerna har utvecklats såhär de senaste åren:

wind-growth-2015

Även om resten av världen bara mycket marginellt slår sitt rekord från 2012, så gör Kinas enorma utbyggnad att vindkraften totalt har brutit sig ut från den nivå på cirka 40 GW per år som gällt sen 2009. Om vi plottar kumulativa vindinstallationer så ser vi att avvikelsen från linjär tillväxt ännu inte är särskilt stor, men ändå så får detta betraktas som ett tydligt utbrott från trendlinjen:

wind-linear

Det brukar hävdas att vindkraften blir allt bättre, med högre kapacitetsfaktorer, dvs mer energi levererad per installerad effekt. Det är en sanning med modifikation. Vindkraften globalt har de senaste 10 åren ökat från usla 22% kapacitetsfaktor till nästan lika usla 23%. Orsaken är Kina, som subventionerar fram vindfarmer men inte har förmåga att faktiskt koppla in dem på elnätet och balansera dem. Notera att energileveransen för 2015 ännu inte finns med (källa: BPs Statistical Review of World Energy 2015):

wind-cf

Så, summa summarum, är det läge att gratulera vindkraften till ett strålande 2015 och till dess utbrott från den linjära tillväxtskurva som man länge brottats med. 63 GW skulle med 30% kapacitetsfaktor kunna producera cirka 166 TWh/år, vilket tar en marknadsandel på cirka 0.7%. Med 20 års livslängd ger det en asymptotisk penetration på 14%, en rejäl ökning sen mitt förra estimat på cirka 10%.

Livstidsproduktion

År 2015 installerades 9377 MW kärnkraft, 53500 MW vindkraft och 59000 MW solceller. Vind- och solsiffrorna är preliminära. Proportionerna kärnkraft/vind/sol blir alltså cirka 1/6/6, om man använder debatt-tricket appeal to capacity:

capacity-2015

Kapacitetsfaktorerna, dvs hur mycket produktion man får ut i genomsnitt jämfört med märkeffekten hos verken, varierar kraftigt. Om man tittar på nya installationer kan man räkna med ca 90% för kärnkraft, 30% för landbaserad vindkraft och 15% för solceller, helt enkelt eftersom kärnkraften kör 24-7 medan sol och vind levererar helt enligt naturens fluktuationer.

Kina har usla kapacitetssiffror för vind och detta drar ner snittet, så 30% kan vara optimistiskt. Solceller får som bäst cirka 20%, men bara 10% i länder som Tyskland och Sverige. Årsproduktionen som installationerna 2015 kommer leverera framöver är därför cirka 74 TWh för kärnkraft, 141 TWh för vindkraft respektive 78 TWh för solceller, dvs proportionerna 1/2/1:

yearly-2015

I USA håller industrin och tillståndsbyråkratin på med förberedelser inför att förlänga licenserna för befintliga kärnkraftverk, som byggdes för 30-40 års livslängd, till 80 år. Reaktorerna kommer alltså drivas dubbelt så länge som de designats för. Nya reaktorer designas för 60 år och kan antagligen lätt drivas i 120 år. Men även vind och solceller kan troligen drivas på övertid, så låt oss räkna på designade livslängder. Det är för kärnkraft ca 60 år, för vindkraftverk 20 år och för solceller 25 år.

Totala livstids-el-leveransen för den installerade effekten år 2015 blir då 4400 TWh kärnkraft, 2800 TWh vindkraft samt 1900 TWh solceller, eller en proportion på 5/3/2.

lifetime-2015

Detta innebär alltså att kärnkraftens utbyggnad år 2015 är ungefär lika stor som vindens och solens sammantaget, med hänsyn taget till kapacitetsfaktor och livslängd! De intermittenta kraftslagen har fortfarande en mycket lång väg att vandra.

Så stor kommer också respektive kraftslags årliga elproduktion bli asymptotiskt, dvs om man bygger samma mängd varje år och livslängden är som antagits. (Då har vi inte räknat med att solceller degraderas över tid.) Till en början ligger kärnkraften lägre, men vinner till slut på uthållighet:

asymptotically-2015

Det är tydligt att vindkraft är ett egoistiskt sätt för innevarande generation att ge dem själva lite extra kraft, utan en tanke på att göra något bestående som även barnen får nytta av i vuxen ålder. Dessutom lämnar man till efterkommande stackare att lösa eller leva med de växande intermittensproblemen. Ett kärnkraftverk, däremot, är en seriös långsiktig investering som matar ut ren, billig baskraft inte bara till de egna barnen, utan även till barnbarnen. Värdefullare materiell gåva kan man knappast ge sina efterkommande!

Energikostnader och ränta

Det här är andra delen i en serie om kärnkraftens (och konkurrenters) kostnader. Du kan vilja läsa första delen först.

Förnybart-förespråkare hävdar att kärnkraft är extremt dyrt medan förnybart är tokbilligt. Kärnkraftskramare hävdar motsatsen. ”Bevis” kastas hit och dit, källors trovärdighet framhålls och ifrågasätts. Spännande nog påstås förnybart ofta vara såväl billigast som största jobb-generatorn, vilket givetvis är helt inkompatibla påståenden.

I den här delen tänkte jag berätta om hur man beräknar ett energislags kWh-kostnad, vilka realistiska ingångsvärden vi har (även för sol och vind), som livslängd, ränta, investeringskostnad, driftskostnad mm. Metoden kallas Levelized Energy Cost (LEC) eller Levelized Cost Of Energy (LCOE), och ger en kostnad per energi-enhet (exempelvis kWh).

Beräkningen av LEC går i princip ut på att summera alla kostnader över verkets livstid och dividera med energiproduktionen. Det enda som gör det lite mer komplicerat är inverkan av ränta. Såhär ser det ut som en formel, klippt rakt av från wikipedia:

LEC

Räntan (discount rate) och divisionerna med (1+r)^t kan vara både svårt att begripa och svårt att acceptera för icke-ekonomer. (Jag stöter på folk i diskussioner som vägrar ta hänsyn till ränta för deras solcellsinvesteringar, exempelvis). Att man upphöjer med ”t” är förstås bara vanlig ränta-på-ränta. Mer om räntan senare.

Typiska parametrar och resultat

Det finns LEC-kalkylatorer på nätet och den som är hyggligt slängd i Excel kan lätt göra ett eget spreadsheet. Du kan alltså relativt lätt räkna själv med andra parametervärden än mina. Här är mina exempelvärden och resultat:

LEC-by-source

Dessa parametrar är omsorgsfullt valda för att inte vara orättvisa, men det går att argumentera för andra, och de är definitivt platsberoende. Du som ändå ser rött och tycker jag är nedrigt elak mot ditt favorit-energislag eller att jag favoriserar ditt hat-energislag, lugna dig en stund och läs vidare, inklusive kommande inlägg i den här serien.

Vindkraftsförespråkare och kärnkraftsmotståndare kan givetvis tweaka parametrarna så att vindkraft blir något billigare än kärnkraft. Det är dock inte enstaka ören hit eller dit som bör avgöra ett val av energikälla, utan här är det centralt att förstå att vindkraft är en sekunda vara med lägre värde, sämre skalbarhet och större externa kostnader pga sin intermittens.

Jag tänker gå igenom alla parametrar framöver, motivera mina val och visa med grafer hur känslig modellen är för förändringar i parameterval. I det här inlägget avverkar jag ränta och livslängd:

Ränta

Konsekvensen av ränta är att ju avlägsnare inkomster och kostnader är i tiden, desto mindre räknas de. Orsaken är dels att man har alternativa investeringar som ger avkastning, dels att det finns en risk att investeringen på något sätt skjuts i sank pga haveri, disruptiv teknologi, statliga ingripanden eller dylikt. Ju högre risk, desto högre avkastning bör man alltså kräva.

Skillnader i ränta

Det finns de som argumenterar för att kärnkraft bör belastas med mycket högre ränta, eftersom kärnkraft har en stor risk för förseningar och fördyringar som i Olkiluoto 3, förtida nedläggningar, att man blir omsprungen av sol-och-vind, haverier mm. Det ligger en del i det, sett ur ett mycket snävt perspektiv. Samtidigt har i stort sett all signifikant finansiell risk sitt ursprung i rent politiska val. Val att i onödan byråkratisera kärnkraften så byggena blir dyra och försenade. Val att subventionera andra kraftslag så att kärnkraften blir ”omsprungen”. Val att helt enkelt lägga ner reaktorer, eventuellt genom att successivt höja godtyckliga och snedvridande skatter.

Självklart måste man ta hänsyn till sådana risker som privat byggare. Staten, däremot, om vi vill att rationell energiförsörjning ska byggas för maximalt välstånd och minimal footprint, bör dock göra sitt bästa för att lugna marknadsaktörer och ge garantier för att man själv, staten, inte kommer sabotera. Ett sätt att göra det på är att ge lånegarantier till byggprojekten. Ett annat att stifta lagar till skydd mot exempelvis godtyckliga skatter. Ett tredje är att staten helt enkelt bygger själv. En del ser sånt som en subvention, medan jag snarare ser det som en kompensation för eller garanti mot att staten beter sig illa.

Sedan så bör man betänka att staten tar bort risk från förnybart. Utan subventioner som står för mer än hälften av intäkten till vindkraften och solcellerna skulle givetvis dessa kraftslag vara mycket riskablare att bygga och volymerna vore mycket mindre. Risken att bli ”omsprungen” är större för förnybara intermittenta kraftslag, som konkurrerar ut sig själva i mycket större utsträckning än de konkurrerar ut annat (genom att ny produktion levererar mycket el under samma korta tidrymder som gammal produktion).

Min bedömning är att många vindkraftsoperatörer hade kursat om de inte fått en bailout i form av en ”höjning av ambitionsnivån” i elcertifikaten, och det just pga att mer vind har kommit in och pressat priserna på både el och elcertifikat. Vindkraftsbyggarna kan räkna kallt med att bailouts kommer på beställning och därmed behöver de inte prisa in lika mycket risk.

Motivering av värde

Av skäl nämnda ovan väljer jag att ansätta samma ränta för alla kraftslag. Jag har valt just 5% lite godtyckligt. Det är en lite väl låg ränta för ett privat företag, men jag tror att stater under överskådlig framtid kommer anse det värt en del att minska CO2-utsläpp och skapa billig, pålitlig energi till industrier mm. Det ger helt enkelt positiva externaliteter, och alldeles särskilt när det gäller att bygga en reaktorflotta som skapar förtroende för långvarigt och stabilt låga priser. Hursomhelst så slår andra räntesatser likartat på alla dessa energislag, som tar sina investeringar up-front, innan produktionen börjar. Sålänge vi har samma ränta för energislagen spelar nivån alltså mindre roll.

Slutförvaret är ”typ gratis”

En konsekvens av räntan är att slutförvar och demontering, ur en strikt ekonomisk synvinkel, är ”typ gratis”, även om många försöker göra en stor grej av det och se till att det smärtar ändå. Redan innan vi tar hänsyn till ränta ska kostnaden att riva utrustning vara mycket lägre än kostnaden att tillverka den med hårda kvalitetskrav. Kostnaden att gräva upp stora mängder malm, laka ur, anrika och tillverka bränsle ska vara mycket högre än att dumpa dessa små mängder metall i ett djupt hål. Annars har man gjort fel! Men DESSUTOM ska man alltså dividera den redan låga kostnaden med (1+r)^t, som lätt blir i storleksordningen 20-50.

Först kör man nämligen reaktorn i cirka 40-60 år och sen låter man radioaktiviteten klinga av i kanske 15-20 år innan man börjar demonteringen, medan avfallet får klinga av ännu längre innan det slutförvaras. Om vi ansätter 5% ränta så bör vi då dividera kostnaden med allraminst 1.05^60 = 19. Kostnaden är då så låg att den kan försummas, även om den vanliga avsättningen på något öre/kWh gjorts i posten för drift och underhåll.

Notera, apropå det, att demontering för förnybara energislag görs tidigare och därmed inte får lika stor fördel av räntan. Vindkraften har rejäla betongblock som måste bilas och transporteras bort för att återställa marken, exempelvis, och 1.05^20 = 2.7.

Det finns många typer av invändningar mot det här resonemanget, men vi kan ju beta av dem i kommentarsfälten?

Förseningar är dyra

Omvänt gör räntan att förseningar i färdigställande av en anläggning höjer LEC ganska mycket, eftersom man tar kostnader tidigt medan intäkterna, energin, produceras sent och alltså divideras med allt större faktorer. Återkommer till inverkan av byggtid i ett senare inlägg.

Livslängd

Ju högre ränta, desto mindre roll spelar livslängden. En riktigt lång livslängd förbättrar inte LEC särskilt mycket. KWh-kostnaden blir alltså ungefär samma om man sätter en reaktors livslängd till 40, 60 eller 80 år, särskilt om räntan är hög. Kurvan har samma utseende för alla energislagen:
levelized-discount

Kärnkraften får alltså inte mycket ekonomisk cred för sin långa livslängd, där exempelvis amerikanska kärnkraftsindustrin och tillsynsmyndigheten börjar förbereda licensförlängningar till 80 år, men det går att se det som ytterligare en positiv externalitet – inte minst för barn och barnbarn som kan få väldigt billig och miljövänlig el utan någon större arbetsinsats.

Som sagt, stay tuned för ytterligare inlägg i ämnet.

Kallt och vindstilla

Det här får bli ett ganska snabbt inlägg med några grafer som mest får tala för sig själva. Vi har haft en liten köldknäpp nu, en reaktor av tio är redan nedlagd och tre ytterligare har man lagt snaran om halsen på. Men reaktorerna går bra – ändå värmde man upp oljekraftverken och tog in en viss import, eftersom vinden producerat dåligt. Svenska Kraftnät är tydliga med att vi behöver styrbar kraft i sin kommentar.

Såhär såg det ut i SvKs kontrollrum under torsdagen:

kontrollrummet160107

Vindkraften ligger idag över 10% av Sveriges elförsörjning i genomsnitt, men nu när det var effektbehovs-topp så underpresterade vinden kraftigt. Köldknäppar är ofta stilla.

Så några egenhackade grafer. Vind och sol växer i Sverige, så därför är statistiken lite svår att jämföra mellan år. Därför har jag normerat de senaste ca 3 årens vind- och solleveranser så att tidigare datapunkter skalats upp proportionerligt för att matcha dagens installerade effekt. Om man då plottar timvisa leveranser av vind, sol och kärnkraft som funktion av förbrukningen, så ser det ut såhär (källa: Svenska Kraftnät):

karnkraft-vs-konsumtion

Kärnkraften beter sig mycket väluppfostrat. Aldrig någonsin under 3 GW och alltid över 5 GW när vi har mer än genomsnittskonsumtion. Ju mer konsumtion, desto mer leverans. Kärnkraften ser till att resten av systemet aldrig behöver stå för mer än cirka 16 GW. Lite kuriosa är att man här ser ganska tydligt att kärnkraften levererar i ett antal diskreta ”block” som bildar en sorts horisontella linjer. Det är alltså långa perioder då olika kombinationer av reaktorer matar ut en tämligen konstant effekt.

vind-vs-konsumtion

Vindkraften däremot är ”all over the place”. Den producerar som mest när behovet är mittemellan, men producerar sämre då behovet är som allra störst. (Valde en polynomisk trendlinje i det här fallet med tanke på scatterplottens utseende.) Vi ser att om vi går över på enbart vindkraft genom att multiplicera ovanstående produktion med ca fyra, så måste resten av elproduktionen klara av cirka 23 GW, mot 16 GW för kärnkraft.

sol-vs-konsumtion

Solceller – det kan knappast komma som en överraskning att solen inte kan hjälpa till med toppeffekten alls i Sverige, utan producerar mindre ju högre lasten är. För det mesta levererar solcellerna i princip ingenting, vilket innebär att trendlinjen ligger väldigt lågt.

Hursomhelst, Vattenfalls chef varnar för nedläggning av fler reaktorer, sålänge effektskatten ligger där den ligger. Jag undrar lite vad man väntar på. Ibrahim Baylan har ”tät dialog”, kanske för att trösta och förnybart-peppa?

Helgläsning v40

1.  Nuclear war survival skills, en amerikansk bok från 1987. En hel del matnyttigt, faktiskt. Förutom alla praktikaliteter, så konstaterar man att auktoritativa studier visat att Hiroshima- och Nagasaki-offer inte fick några genetiska, ärftliga skador, att det här med ”kärnkraftsvinter” är kraftigt överdrivet, att USA och Sovjet inte har haft tillräckligt med kärnvapen för att döda alla människor på jorden och att ”eldstormarna” blir betydligt mindre än vad man inpräntat i folk. Man pekar ut Carl Sagan som alarmist och konstaterar att sovjeterna hakade på och hjälpte till att sprida alarmistisk info. Man kan också notera att antalet stridsspetsar i världen har minskat med cirka 75% sen boken skrevs, till ca 16300 stycken.

US_and_USSR_nuclear_stockpiles.svg

2. How Humans Save Nature: ”We didn’t save the whales by using them more sustainably. We saved them by not needing them anymore.” I linje med ekomodernismen. Jag är inte så förtjust i videos generellt, men den här är värd sina 20 minuter.

3. Majoritetsillusionen i sociala nätverk gör att vissa idéer kan verka betydligt mer vanliga än de egentligen är, när folk med många vänner pushar för dem. Jag misstänker att gröna har många vänner och att deras idéer därför verkar vanligare och populärare än vad de egentligen är.

4. Det amerikanska företaget bakom Bill Gates kärnkrafts-koncept, Travelling-Wave-reaktorn, har signerat ett samverkansavtal med Kinas statliga kärnkraftsbolag om samverkan kring konceptet. Tyvärr är det så att USAs NRC, Nuclear Regulatory Commission, ställer upp för tungrodd byråkrati för att det ska vara realistiskt att bygga prototyper i USA. En annan pusselbit är nyheten för någon månad sen, att amerikanska energimyndigheten anslår $6 miljoner vardera för utvecklingen av två (2) avancerade reaktorkoncept under 2015. Ja, du läste rätt. Inte miljarder utan miljoner.

5. The Myth of Dynastic Wealth: The Rich Get Poorer, empirisk evidens för att Piketty är ute och cyklar. ”Typically, we find that descendants halve their inherited wealth—relative to the growth of per capita GDP—every 20 years or less”.

6. Det har varit stiltje i vindkraftsutbyggnaden i Sverige hela detta år pga låga elpriser och låga priser på elcertifikat. Branschen hoppas på att regeringen redan denna månad åtgärdar det senare.

7. International Energy Agency, IEA, sällar sig till förnybart-evangelisterna och använder sig av den beprövade gröna vilseledandemetoden ”appeal to capacity”. De skriver: ”Renewable electricity additions […] will account for almost two-thirds of net additions to global power capacity”. Jomenvisst, strunta i att sol och vind tillsammans producerar ungefär 20% av sin märkeffekt i genomsnitt medan kolkraftverk, kärnkraftverk och naturgas-kraftverk producerar på bortåt 80%. Vi väntar för övrigt på att sol och vind faktiskt ska börja se till att fossil energiproduktion i världen KRYMPER.

Globala trender i elproduktion 2014

Några av de största kontroverserna kring val av elproduktion handlar om hur snabbt det går att skala upp CO2-fria tekniker och hur stor andel intermittenta kraftslag som ett elnät klarar av. Låt oss titta på hur ”fakta på marken” utvecklats.

När det gäller kärnkraft, vindkraft och solceller är det bara europeiska länder som ens är i närheten av att pressa gränserna. Delvis, givetvis, för att vi består av ett gytter av små rika stater, men ändå:

  • Sydkoreas kärnkraftsandel, 30%, är den största utanför Europa. Tio länder i Europa har större andel med Frankrike på topp med 78%.
  • USAs vindkraftsandel, 4%, är den största utanför Europa. Femton länder i Europa har större andel med Danmark på topp med 41%. (Danmark är dock inte en eget elnät, vilket gör att dess höga andel inte är relevant för frågeställningen. Irland och Iberiska halvön (Spanien+Portugal) är däremot egna elnät och har nått drygt 20%.)
  • Australiens solcellsandel, 2%, är den största utanför Europa. Åtta länder i Europa har större andel med Grekland på topp med 9%.

Såhär ser min graf över hur snabbt elproduktion skalat historiskt bland de bästa pionjärländerna, uppdaterad med BPs nya data för 2014:

electricity_uptake-2014

Som synes är inget land i närheten av att skala upp sol eller vind lika snabbt som kärnkraft skalades upp redan för 30-40 år sen. Något som kanske förvånar är att Grekland snabbt seglat upp som solcells-ledare trots djup ekonomisk kris. Detta faktum fick mig att titta lite extra på siffrorna och inse en viss kvalitativ skillnad mellan kärnkraft å ena sidan och vindkraft/solceller å andra sidan. Det handlar om att kärnkraftens uppskalning sammanföll med ökande elproduktion i respektive land, medan snabb uppskalning av sol och vind sammanfaller med minskande elproduktion!

Exempel (varning, går att argumentera för cherry-picking här): Danmark stack från 20% vind till dagens 40% samtidigt som elproduktionen sjönk från 39 TWh till 32 TWh idag (-18%). Greklands elproduktion peakade år 2008 på 64 TWh och är nu nere på 50 TWh (-22%). Sverige, däremot, låg på cirka 90 TWh år 1977 och sen drog kärnkraften iväg och tio år senare låg vi på 147 TWh (+64%).

För en grön ideolog är givetvis minskad elproduktion något gott, men för oss som bryr oss om miljö och mänskligt välstånd, i opposition till asketisk ideologi, är det tvärtom. Dessutom handlar det om vad de folkrika, fattigare länderna är intresserade av att kopiera.

De två största länderna, befolkningsmässigt och när det gäller CO2-utsläpp, är Kina och Indien. Låt oss se på hur de skalar:

china_ramping_2014 india_ramping_2014

 

Som synes har vindkraften gått om kärnkraften i dessa länder, medan solkraften inte nått signifikanta nivåer. Nivåerna allmänt är ännu mycket låga och inga slutsatser kan dras av detta utom att kolkraften fortfarande är kung. Kina har hyggligt mycket kärnkraft i pipen, så det är inte omöjligt att den åter passerar vindkraften om ett par-tre år.

Elbilsladdning

Signaturen Yergen bad mig om synpunkter på elbilsladdning, så ”here goes”. För nytillkomna läsare kan det vara bra att veta att jag är mycket positiv till elbilstekniken som sådan och än mer positiv till autonoma bilar.

Laddning som gratislunch

Åsa Romson ”rasar” över att eljättarna ska börja ta betalt för laddning och extra mycket vid snabbladdning, cirka 90 kr för 30 minuter. Det kan ge en milkostnad på 7 kr för en Nissan Leaf eller 27 kr/mil för en Mitsubishi Outlander Plug-in-hybrid. (Varför man skulle vilja lägga 30 minuter på att dyr-ladda en hybridbil framgår inte.)

Åsa tycker att det är ”dålig timing” att ”just nu” signalera att laddning är dyrt när regeringen försöker skapa ett genombrott i elbilsförsäljningen. Helt normalt socialistiskt väljar- och konsumentförakt alltså – folket tål inte sanningen och måste luras. Själv tror jag att folk dels är kloka nog att köpa elbilar vars batteristorlek passar deras normala användning och dels är kloka nog att inte oroa sig för att i undantagsfall betala 90 spänn för att tanka. Jag tankade diesel för knappt 600 spänn igår kväll, vilket förvisso ger mig mycket mer räckvidd, men 90 spänn är ändå inte avskräckande som undantagsgrej.

laddstolpe

Nu har vi relativt standardiserade laddstolpar och det är lätt att med bilens navigationssystem eller appar peka ut dem och leda folk till dem. Marknaden är alltså konkurrensutsatt, vilken entreprenör som helst kan sätta upp laddstolpar, så det är inte precis så att man kommer kunna skära guld med täljkniv. Tvärtom tar jag för givet att de som tillhandahåller laddstolpar gör förlust även med prishöjningen, iallafall under överskådlig framtid. Marknaden är helt enkelt för liten.

Det är effektivt och rationellt även för kunderna att det tas betalt per minut, eftersom tillgängligheten ökar när folk avskräcks från att ockupera laddstolpar längre än nödvändigt. Annars blir laddstolparna föremål för tragedy of the commons. Kom ihåg att ”there is no such thing as a free lunch”. Man får alltid betala, på ett eller annat sätt, men ju mer direkt man får betala, desto effektivare tenderar utnyttjande och resursallokering bli.

Elon Musk och Tesla tillhandahåller gratis laddning i ett eget nätverk av laddstolpar, men man ska minnas att de säljer lyxbilar med enorma batterier som ger 40-50 mils räckvidd. Det innebär att man sällan behöver fundera på laddning som Tesla-ägare, och att 13 strategiskt utplacerade Tesla Superchargers täcker in de mest tättbefolkade delarna av Sverige och servar våra cirka 300 Teslor. Ska man placera ut ett nät av laddstolpar som på riktigt ska serva hela landet och bilar med batterier som är kanske en tredjedel så stora, så blir det en helt annan sak.

Elsorter

När det gäller vilken el man laddar bilarna med, så framhålls elbilar ofta som något av en silverkula för att fixa integration av intermittent el som sol och vind. Just snabbladdning är anti-tesen till detta. När folk måste ladda under 30 minuter i flykten så finns inget utrymme för att försöka matcha den nyckfulla och väderberoende intermittenta elproduktionen. Istället bygger idén på att man har bilen vid laddstation under större delen av dygnet och ger nätet/laddstationen frihet att ladda när elen är billig.

Länsstyrelserna redovisar cirka 4.4 miljoner bilar och 1260 mil per bil. Om exempelvis 80% av detta transportarbete konverteras till el och bilarna snittar 2 kWh/mil, så blir det 9 TWh eller cirka 6% extra efterfrågan på el, vilket är ganska marginellt. Om folk förlägger hälften av laddningen till dagtid med solcells-el, så ger det alltså vid en naiv och mycket optimistisk betraktelse möjlighet att integrera ytterligare 3% solcellsel. Förutsättningen är bland annat att man ser produktionstopparna under de bästa sommartimmarna som begränsningen, snarare än effektunderskottet på vintern. Naturligare och rationellare än svindyr solel på jobbet är förstås att ladda hemma under natten med kärnkraft.

Att solceller och billaddning ändå går att matcha litegrann beror på att solcellernas främsta variation är på dygnsbasis. Vindkraften däremot varierar snarare på vecko- eller tillochmed månadsbasis och det är inte realistiskt att förvänta sig att folk ska förskjuta sin laddning mer än ett halvt dygn. Såhär såg exempelvis dygnsproduktionen ut 2014: (Svenska kraftnät har inte rapporterat december än.)

daily_wind2014

Det innebär att vindkraftens intermittens inte kan slätas över av billaddning. Som vanligt när olika aktörer hävdar att något drivs av vindkraft, så handlar det om att man på årsbasis producerar motsvarande mängd el med vindkraft. Det finns ingen som anpassar sin verksamhet efter den produktionskurvan!

Det finns också de som drömmer sig bort ännu längre och tror att folk ska låta bilbatterierna stötta när elnätet behöver mer el. Men folk vill ha sina bilar redo och skapligt fulladdade och de vill maximera batteriernas livslängd och bilens andrahandsvärde. Att förskjuta sin laddning några timmar kan ofta vara okej. Att låta elnätet leka jo-jo med ens batterier är däremot uteslutet.

Det blir nejdetkanviinte på gratis billaddning och på sol- och vindladdning.

Vindkraften, uppdatering 2015

I veckan publicerade GWEC, Global Wind Energy Council, statistiken för vindkraftsinstallationerna globalt under år 2014. Ett av de första inläggen på den här bloggen, för nästan ett år sen, argumenterade för att vindkraftens utveckling numera är linjär, eftersom nyinstallationerna legat och harvat kring 40 GW i hela fem år. Därför är det intressant att se att nyinstallationerna under 2014, efter ett uselt 2013, ökat till 51 GW. Liket kanske lever? Per år ser installationerna ut såhär:

annual_installed_wind

Om man medelvärdesbildar 2013 och 2014 är utbyggnadstakten bara 44 GW och som bekant gör subsidie-förändringar att projekt kan skjutas över årsskiften, så man kanske inte ska dra alltför stora växlar på ökningen 2014. Man kan också konstatera att Kina driver utvecklingen med sin installation av 23 GW, och att världen exklusive Kina hade sitt bästa installationsår år 2012 med 32 GW installerat mot bara 28 GW iår:

china-vs-world-wind

Detta innebär att vindkraften under 2014, troligen tillfälligtvis, bröt en stadigt vikande procentuell trend i installationerna:

wind-growth-2015

Det är alltså uppenbart att vindkraften slutade växa exponentiellt cirka 2009, och att utvecklingen numera är linjär eller närapå. I mitt förra inlägg skrev jag att givet en installationstakt på 45 GW/år och en livslängd på 20 år så kommer vindkraften aldrig gå över 900 GW, vilket vid en kapacitetsfaktor på 30% är cirka 10% av dagens elproduktion:

windprognosis

Den något högre tillväxtsiffran för 2014 kan börja rucka på detta scenario, men jag väntar med att justera tills nästa år, om vi ser en ny trend då. Greenpeace och GWEC har samarbetat om att ta fram Global Wind Energy Outlook 2015 (släppt för knappt två veckor sen) och har där betydligt mer optimistiska scenarier:

Under an advanced policy scenario — the manifestation of the iron political will required in order to address climate change — wind power could reach a total installed global capacity of 2,000 GW by 2030, supplying up to 19 percent of global electricity.

Om jag ska översätta så innebär det att om man samfällt i världen öser på med enorma subsidier för vindkraft och hinder för fossilkraft så kan man komma upp i 19% vind till 2030. Det känns mycket avlägset och det erkänner även författarna.

Det kan vara värt att nämna att lilla Sverige är nummer åtta i topplistan av installatörer år 2014 med cirka 1 GW nyinstallationer. Om det är bra eller dåligt går förstås att diskutera.

tio-i-topp-2014

En del vindkraftsförespråkare brukar hävda att kapacitetsfaktorerna ökar allteftersom (kapacitetsfaktorn är kvoten mellan genomsnittlig effekt och installerad effekt), vilket innebär att vindkraften egentligen ökar starkare än vad kapacitetssiffrorna säger. Låt oss undersöka det påståendet, tyvärr utan senaste året eftersom produktionssiffrorna för 2014 inte kommit än.

En teknisk notering: Det är inte rättvisande att jämföra kapacitetssiffror, som redovisas i slutet av året, med produktionssiffror som anges för hela året, och därför använder jag genomsnittet av kapaciteten exempelvis i slutet av 2012 respektive 2013 och jämför med produktionen under 2013. Kapacitetsfaktorutvecklingen globalt har då sett ut såhär:

global-wind-cf

Och mycket riktigt, det finns en svagt ökande global trend för kapacitetsfaktorn. Det bör också finnas utrymme för skapliga förbättringar, eftersom 24% är uselt. (Notera att jag generöst ansatte 30% i mitt ”pessimistiska” scenario.) Även här dominerar Kina med en kapacitetsfaktor neråt 18%. Landet verkar installera vind utan att bry sig särskilt mycket om att tillse att elnätet kan hantera det, och ibland utan att ens koppla in de nya vindfarmerna på nätet! Så kan det bli när tillväxten är kraftigt subventionsdriven. Det är upp till betraktaren att avgöra om det bara är vanlig socialistisk ineffektivitet som ligger bakom, eller om de kinesiska förnybart-satsningarna också är en maskirovka som syftar till att få rödgröna i väst att fortsätta satsa helhjärtat på förnybart medan Kina skaffar sig ett massivt industriellt övertag inom kärnkraftssektorn.

Hursomhelst, inte mycket att hurra för. Jag och de gröna bör vara överens om att dagens nivå på vindkraftstillväxt inte räcker för att hota kolet, och att vindkraften sedan 2009 mest levererat besvikelser. Hade vindkraften sen 2009 fortsatt växa exponentiellt med 30% per år hade den legat på 590 GW idag istället för verklighetens 370 GW.